Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange
نویسندگان
چکیده
Stream water was locally recharged into shallow groundwater flow paths that returned to the stream (hyporheic exchange) in St. Kevin Gulch, a Rocky Mountain stream in Colorado contaminated by acid mine drainage. Two approaches were used to characterize hyporheic exchange: sub-reach-scale measurement of hydraulic heads and hydraulic conductivity to compute streambed fluxes (hydrometric approach) and reach scale modeling of in-stream solute tracer injections to determine characteristic length and timescales of exchange with storage zones (stream ~racer approach). Subsurface data were the standard of comparison used to evaluate the reliability of the stream tracer approach to characterize hyporheic exchange. The reach-averaged hyporheic exchange flux (1.5 mL S-l m-1), determined by hydrometric methods, was largest when stream base flow was low (10 L S-l); hyporheic exchange persisted when base flow was 10~fold higher, decreasing by approximately 30%. Reliability of the stream tracer approach to detect hyporheic exchange was assessed using first-order uncertainty analysis that considered model parameter sensitivity. The stream tracer approach did not reliably characterize hyporheic exchange at high base flow: the model was apparently more sensitive to exchange with surface water storage zones than with the hyporheic zone. At low base flow the stream tracer approach reliably characterized exchange between the stream and gravel streambed (timescale of hours) but was relatively insensitive to slower exchange with deeper alluvium (timescale of tens of hours) that was detected by subsurface measurements. The stream tracer approach was therefore not equally sensitive to all timescales of hyporheic exchange. We conclude that while the stream tracer approach is an efficient means to characterize surface-subsurface exchange, future studies will need to more routinely consider decreasing sensitivities of tracer methods at higher base flow and a potential bias toward characterizing only a fast component of hyporheic exchange. Stream tracer models with multiple rate constants to consider both fast exchange with streambed gravel and slower exchange with deeper alluvium appear to be warranted.
منابع مشابه
Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies
Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow mo...
متن کاملImaging hyporheic zone solute transport using electrical resistivity
Traditional characterization of hyporheic processes relies upon modelling observed in-stream and subsurface breakthrough curves to estimate hyporheic zone size and infer exchange rates. Solute data integrate upstream behaviour and lack spatial coverage, limiting our ability to accurately quantify spatially heterogeneous exchange dynamics. Here, we demonstrate the application of near-surface ele...
متن کاملA multiscale model for integrating hyporheic exchange from ripples to meanders
[1] It is necessary to improve our understanding of the exchange of dissolved constituents between surface and subsurface waters in river systems in order to better evaluate the fate of water‐borne contaminants and nutrients and their effects on water quality and aquatic ecosystems. Here we present a model that can predict hyporheic exchange at the bed‐form‐to‐reach scale using readily measurab...
متن کاملCharacterizing hyporheic transport processes — Interpretation of electrical geophysical data in coupled stream–hyporheic zone systems during solute tracer studies
a r t i c l e i n f o Quantifying hyporheic solute dynamics has been limited by our ability to assess the magnitude and extent of stream interactions with multiple domains: mobile subsurface storage (MSS, e.g., freely flowing pore water) and immobile subsurface storage (ISS, e.g., poorly connected pore water). Stream-tracer experiments coupled with solute transport modeling are frequently used ...
متن کاملEffect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance
We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013